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Abstract
Magnon Bose condensation (BC) in a symmetry breaking magnetic field is the
result of an unusual form of Zeeman energy that has terms linear in the spin-
wave operators and terms mixing excitations, the momenta of which differ in the
wavevector of the magnetic structure. The following examples are considered:
simple easy-plane tetragonal antiferromagnets (AFs), the frustrated AF family
R2CuO4, where R = Pr, Nd etc, and cubic magnets with a Dzyaloshinskii–
Moriya interaction (MnSi etc). In all cases BC is important when the magnetic
field is comparable with the spin-wave gap. The theory is illustrated by existing
experimental results.

1. Introduction

Magnon Bose condensation (BC) in a magnetic field has been intensively studied in spin singlet
materials (see, for example, [1] and references therein). In this case magnons condense in the
field just above the triplet gap. In this paper we consider magnon BC that appears in a symmetry
breaking magnetic field. The theoretical discussion is illustrated by experimental observation
of this BC in frustrated antiferromagnet (AF) Pr2CuO4 and the cubic helimagnets MnSi and
FeGe. To clarify our idea we begin by considering conventional AFs. In textbooks two limiting
cases are considered. The first case is when the magnetic field is directed along the sublattices.
In this case the system remains stable up to the critical field HC = �, where � is the spin-
wave gap. Then a first order transition occurs to the state in which the field is perpendicular
to the sublattices (spin–flop transition). In the second case the field is perpendicular to the
initial staggered magnetization. The system remains stable but the spins are canted toward
the field by the angle determined by sin ϑ = −H/(2S J0), where J0 = J z and J and z are
the exchange interaction and the number of nearest neighbours, respectively. At H + 2S J0 a
spin–flip transition occurs to the ferromagnetic state. To the best of our knowledge the first
consideration of the symmetry breaking field was made theoretically in [2] in connection with
an experimental study of the magnetic structure of the frustrated AF R2CuO4, where R = Pr,
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Figure 1. Spin configuration in the field. Full and dashed arrows correspond to zero and nonzero
field, respectively. Additional spin canting in H⊥ is shown by broken arrows. Inset: spin
configuration in neighbouring planes of a frustrated AF.

Nd, Sm and Eu [3, 4]. In these papers a non-collinear structure was observed using neutron
scattering in the field directed at an angle of δ = 45◦ to the sublattices. It was found in [2] that
in an inclined field the Zeeman energy has an unusual form with terms which are linear in the
spin-wave operators and terms mixing magnons with momenta which differ in the AF vector
k0. As a result there arises BC of the spin-waves with momenta equal to zero and ±k0.

A similar situation exists in cubic helimagnets, MnSi etc [5]. If the field is directed
along the helical wavevector k the plain helix transforms into a conical structure and then
the ferromagnetic spin state occurs at a critical field HC. But if H ⊥ k the magnons condense
with momenta zero, ±k, ±2k etc. This leads to the following observable phenomena:

(i) a transition to the state with k directed along the field at H⊥ ∼ HC1 = �
√

2, where � is
the spin-wave gap,

(ii) the second harmonic of the spin rotation with the vector 2k and perpendicular spin
susceptibility at H⊥ < HC1. Rotation of the helix was observed in [6–8].

In this paper we outline basic ideas about BC in a symmetry breaking field as applied to
frustrated cuprates and non-centrosymmetric cubic helimagnets. We illustrate the theory with
some recent experiments.

2. Non-frustrated AF

To demonstrate the basic ideas of our approach we begin with non-frustrated easy-plane
tetragonal AF. We are not interested in thermal fluctuations and consider a single AF plane.
If the field is directed at an angle δ to the b axis (see figure 1) sublattices rotate by an angle
ϕ. Simultaneously, the field component perpendicular to the new Z axis cants the spins by an
angle ϑ � −H⊥/(2S J0) � 1. As a result we have for the two neighbouring spins in (ZY )

frame [2]

S1 = Sz1 Ẑ + ϑSy1Ŷ ; S2 = −Sz2 Ẑ + ϑSy2Ŷ , (1)

where in the linear spin-wave theory Szl = S − a+
l al and Syl = −i

√
S/2(al − a+

l ), l = 1, 2
and al(a

+
l ) are Bose operators. As a result the Zeeman energy has the unusual form

HZ = H‖
∑

a+
q+k0

aq + iϑ
√

N S/2(a0 − a+
0 ), (2)
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Figure 2. Log–log plot of the (1/2, 1/2,−1) Bragg intensity in a diagonal field, h ∼ (HC − H ).

where k0 and N are the AF wavevector and total spin number, respectively. Here the first
term mixes spin-waves with momenta q and q ± k0 and the second one excites (absorbs)
magnons with q = 0. Along with this energy we have conventional spin-wave Hamiltonian
HSW = ∑[Eqa+

q aq + Bq(a−qaq + a+
−qa+

q )/2] with the spin-wave energy εq = (E2
q − B2

q)
1/2.

The spin-wave gap is ε0 = �.
Linear terms in equation (2) contribute to the ground state energy if a0(a

+
0 ) ∼ √

N ,
i.e. these operators have to be considered as classical variables as in the Bogoliubov theory
of the BC in a dilute Bose gas. Due to the first term in (2) we must consider the operators
a±k0 and a+

∓k0
as classical variables too. Minimizing the full Hamiltonian with respect to these

variables we obtain

E = (�2 sin2 2ϕ)/(16J0) − S2 J0ϑ
2 − (H‖H⊥)2/[4J0(�

2(ϕ,H)], (3)

where the first term is the energy of the square anisotropy. In cuprates with S = 1/2 it has
a quantum origin and arises due to pseudodipolar in-plane interaction [9]. The second term
is the energy of the spin canting in a perpendicular field. The last term is the BC energy and
�2(ϕ,H) = �2 cos 4ϕ + H 2

⊥ − H 2
‖ is the spin-wave gap in the field [2]. This contribution

becomes important at H ∼ �. The spin configuration is determined by dE/dϕ = 0 and the
equilibrium condition d2 E/dϕ2 � 0.

This theory was verified by neutron scattering [10, 11]. In a diagonal field H ‖ (1, 1, 0)

the spin configuration in frustrated Pr2CuO4 is governed by equation (3) and the intensity
of the (1/2, 1/2,−1) is given by I ∼ 1 + sin 2ϕ [2]. Neglecting the BC term we get
sin 2ϕ = −(H/HC)

2, where HC = �. As a result at H → HC we obtain I ∼ HC − H . But
very close to HC the BC term becomes important and we have a crossover to I ∼ (HC − H )1/2.
This is clearly seen in figure 2. This crossover was observed in [10, 11].

3. Frustrated AFs

In frustrated R2CuO4 AFs there are two copper spins in a unit cell belonging to different
CuO2 planes (see inset in figure 1). From symmetry considerations these spins do not interact
in the exchange approximation. The orthogonal spin structure is a result of the interplane
pseudodipolar interaction (PDI) [2, 3] and the ground state energy is given by

E = �2

16J0
[sin2 2ϕ1 + sin2 2ϕ2 − 4G sin(ϕ1 + ϕ2)] − S2 J0(ϑ

2
1 + ϑ2

2 ) + EC(ϕ1, ϕ2,H), (4)
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Figure 3. The first order transition in the field directed along the b axis. Calculated intensities for
the spin–flop configurations when spins are perpendicular to the field (white arrows).

where ϑ12 = −H⊥12/(2S J0), G = (�/�)2 and �2 is the difference between the square of the
optical and acoustic spin-wave branches at H = 0. The BC energy EC has a very complicated
form [2] and we do not present it here.

For Pr2CuO4 at T = 18 K we have � � 0.36 meV, � � 2.8 meV and � � 60 � 1 [2].
Then the intraplane PDI is strong and the BC contribution cannot be neglected at low fields
H < �. We illustrate this with the results of particular calculations including and neglecting
BC in the field almost along the b axis (δ � 1). Instead of ϕ1,2 we use new angles determined
as ϕ1 = α + γ /2, ϕ2 = −π/2 − α + γ /2. Neglecting BC we have α = −(H/�)2δ and
γ = (H/�)4δ/G. BC changes the last result: γBC = γ G � γ .

The role of BC can be illustrated by the results of neutron scattering in Pr2CuO4 [12].
The angles α and γ were determined from measurements of two reflections (1/2, 1/2, 1) and
(−12, 1/2, 1). If δ = 0 the zero field spin configuration remains stable at H < HC�G1/4 and
there is no BC as H‖1 = H⊥2 = 0 (see equation (2)). Then the theory without BC predicts a
first order transition to the collinear non-spin–flop state with α = 45◦ and tan γC = G1/2. This
transition is seen in figure 3 at HC � 6.5 T [12]. From these data we obtain γC � 30◦. Using
parameters given above and neglecting the BC we obtain HC � 6.7 T and γC � 7.4◦. The last
quantity is in strong disagreement with experiment. It was demonstrated in [13] that � depends
on temperature, and at T = 10 K we have � � 0.5 meV as in figure 3. Assuming that � does
not depend on T we obtain HC � 7.8 T and γC � 5.3◦ that is in stronger disagreement with
the experiment.
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Figure 4. Field dependence of angles α and γ at δ = 9.5◦.

The experimentally obtained angles α and γ at T = 18 K and δ = 9.5◦ are shown in
figure 4 [12]. The transition to the collinear state with α ∼ −45◦ and γC ∼ 20◦ was observed.
Again the non-BC theory cannot explain the experimental data. For example it gives γC � 2.5◦.
An explanation of all these experimental data using the BC theory will be given elsewhere.

4. BC in helimagnets

In the helimagnets MnSi etc the Dzyaloshinskii–Moriya interaction (DMI) stabilizes the helical
structure and the wavevector of the helix has the form k = SD[â × b̂]/A, where D is the
strength of the DMI, A is the spin-wave stiffness at momenta q � k and â and b̂ are unit
orthogonal vectors in the plane of the spin rotation.

The classical energy depends on the field component H‖ along the vector k and the cone
angle of the spin rotation is given by sin α = −H/HC, where HC = Ak2 is the critical field
of the transition into the ferromagnetic state [5]. However, at H⊥ � HC rotation of the axis
of the helix toward the field direction and the second harmonic 2k of the spin rotation was
observed [6–8]. Both phenomena are related to the magnon BC in a perpendicular field [5].

The linear and mixing terms appear in the Zeeman energy in much the same way as
discussed above:

HZ = (Ha − iHb)
√

N S/2(a−k − a+
k )/2 −

∑
(a+

k a0 + a+
0 a−k) + H.C., (5)

and we have magnon BC with momenta zero and ±k. The corresponding contribution to the
ground state energy is given by

EC = −SH 2
⊥�2/[HC(�2 − H 2

⊥/2)]. (6)

Obviously near the critical point H⊥ = �
√

2 the real form of the BC energy is not so simple. It
is determined by nonlinear interactions, but consideration of this problem is outside the scope
of this paper.

As a result the perpendicular susceptibility is proportional to 1/(�2 − H 2
⊥/2) and a 2k

harmonic appears. The latter was observed by neutron scattering [6–8]. The intensities of the
corresponding Bragg satellites have the form

I± ∼ [�2/(�2 − H 2
⊥/2)]2[1 ∓ (kP )]δ(q ∓ 2k), (7)

where P is the neutron polarization.
If H⊥ → �

√
2 the axis of the helix rotates toward the field. This rotation is governed by

competition of the BC and crystallographic energies [5]. Evolution of the Bragg reflections in
MnSi with H⊥ is shown in figure 5.

5



J. Phys.: Condens. Matter 19 (2007) 145208 S V Maleyev et al

) 10a H mT= ) 50b H mT= ) 150c H mT=

Figure 5. Bragg reflections in the field along (1, 1, 0). (a) Four strong spots corresponds to
±(1, 1, 1) and ±(1, 1,−1) reflections. Weak spots are the double Bragg scattering. (b) The 2k
satellites appear. (c) The helix vector is directed along the field.

(This figure is in colour only in the electronic version)

5. Conclusions

We discussed a few examples of magnon BC in a symmetry breaking magnetic field. BC
appears to be due to unusual terms in the Zeeman energy. Obviously this phenomenon is very
general and can be observed in other ordered magnetic systems. Effects related to BC are more
pronounced in a field of the order of the sine-wave gap.
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